The superspin approach to a disordered quantum wire in the chiral-unitary symmetry class with an arbitrary number of channels

نویسندگان

  • Andreas P. Schnyder
  • Christopher Mudry
  • Ilya A. Gruzberg
چکیده

We use a superspin Hamiltonian defined on an infinite-dimensional Fock space with positive definite scalar product to study localization and delocalization of noninteracting spinless quasiparticles in quasione-dimensional quantum wires perturbed by weak quenched disorder. Past works using this approach have considered a single chain. Here, we extend the formalism to treat a quasi-one-dimensional system: a quantum wire with an arbitrary number of channels coupled by random hopping amplitudes. The computations are carried out explicitly for the case of a chiral quasi-one-dimensional wire with broken time-reversal symmetry (chiral-unitary symmetry class). By treating the space direction along the chains as imaginary time, the effects of the disorder are encoded in the time evolution induced by a single site superspin (nonHermitian) Hamiltonian. We obtain the density of states near the band center of an infinitely long quantum wire. Our results agree with those based on the Dorokhov-Mello-Pereyra-Kumar equation for the chiralunitary symmetry class.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of Fokker-Planck approach and non-linear σ-model for disordered wires in the unitary symmetry class

The exact solution of the Dorokhov-Mello-Pereyra-Kumar-equation for quasi one-dimensional disordered conductors in the unitary symmetry class is employed to calculate all m-point correlation functions by a generalization of the method of orthogonal polynomials. We obtain closed expressions for the first two conductance moments which are valid for the whole range of length scales from the metall...

متن کامل

An approximate model for slug flow heat transfer in channels of arbitrary cross section

In this paper, a novel approximate solution to determine the Nusselt number for thermally developed, slug (low-prandtl), laminar, single phase flow in channels of arbitrary cross section is presented. Using the Saint-Venant principle in torsion of beams, it is shown that the thermally developed Nusselt number for low-prandtl flow is only a function of the geometrical parameters of the channel c...

متن کامل

اثر ثابت های جفت شدگی بین نزدیکترین همسایه ها درسیم وحلقه کوانتومی جفت شده

The electronic transport in an infinite arrays of driven quantum wells coupled to a quantum ring is studied via a single-band tunneling tight-biding Hamiltonian by perturbing and numerical simulations approaches. In the perturbing approach, an analytical relationship in terms of the coupling constants between nearest-neighbors in quantum wire coupled to a ring based on the quantum dynamical alg...

متن کامل

شبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست

 In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...

متن کامل

Conductance in quantum wires by three quantum dots arrays

A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009